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A New Cloud-Based hp Finite Element 
Method 

J. T. Oden? C. A. M. Duarte* and 0. C. Zienkiewicz* 
TICAM - Texas Institute for Computational and Applied Mathematics 

The University of Texas at Austin 

Taylor Hall 2.400 

Austin, Texas, 78712, U.SA. 

Abstract 

A hybrid computational method for solving boundary-value problems is 
introduced which combines features of the meshless Äj?-cloud methods with 
features of conventional finite elements. The method admits straightforward 
nonuniform hp-type approximations, easy implementation of essential bound- 
ary conditions, is robust under severe distortions of the mesh, and can deliver 
exponential rates of convergence. Results of numerical experiments are pre- 
sented. 

1    The Method 

Recent developments made in the context of meshless methods have demonstrated 
the simplicity of adding hierarchical refinements to a low order set of shape functions 
which satisfy the partition of unity (PU) requirement [1-4,6,7]. In particular, in 
the hp-c\oud method introduced in [2], one covers the domain ti of the solution of a 
boundary-value problem with a collection of open sets uia, (Ö C U£=1u;a), the sets 
ua being the clouds, and constructs on the clouds a set of global basis functions (pa 

which form a PU on Q,: 
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One can then build spectral (p-type) approximations by constructing products of 
the ipQ with higher-order spectral approximations to produce enriched basis functions 
iPaLp, Lp being a polynomial of degree p. This idea has been used successfully in gen- 
erating exponentially convergent approximations of elliptic boundary-value problems 
in which convergence is obtained by appropriate /i-refinement, h = maxaha, hQ being 
the diameters of the clouds u>Q, or p-enrichment, p being the order of the polynomial 
carried by the basis functions <paLp [2-4,6,7]. Here, the basic building block for such 
approximation is the PU, and, as observed in [1], this partition of unity can be fur- 
nished by a conventional finite element method. While such a PU on a finite element 
mesh will destroy the "meshless" quality of the approach, ample compensation for 
this loses is provided by a number of advantages over conventional hp-fimte element 
methods. 

Consider, for example, the conventional finite element meshes of triangles or 
quadrilaterals shown in Figs. 1 and 2, respectively, on which continuous global ba- 
sis functions (shape functions) Na are constructed at each nodal point xQ, a = 
1.2...., n. These functions are such that 

n 

^jT Na(x) = 1,        at any x eü 
o=l 

and thus form a PU. By setting ipQ = Na, we can build hp-c\oud approximations 
on this PU and thereby produce a cloud basis that has all of the useful convergence 
properties of the hp-douds but which combines features of conventional FEM's, such 
as exhibiting the Kronecker-delta property at boundary nodes. Some examples of 
cloud-type basis functions are shown in Figs. 3, 4 and 5. Notice from the figures that 
(see also Figs. 6, 7, 8) 

• The clouds ua need not be disks or even convex polygons, 

• The mesh parameter h (or ha) is the diameter of the cloud (the patch surround- 
ing node xQ) and not the diameter of an element in the cloud 

Figure 8 shows a conventional hierarchic field as used today in many codes 
and introduced in the manner described originally by Zienkiewicz, et al [11] and later 
elaborated on by others [8,10]. 

(a) The conventional hierarchic polynomial are introduced using local, element 
based, co-ordinates. These provide complete Cartesian polynomials only up to the 
linear terms when isoparametric distortion is introduced. This completeness can be 
extended to quadrilateral elements using quadratic terms only by introduction of the 
9 node expansion (as shown in [12]). For higher order terms, performance of elements 
may well deteriorate; viz [5]. 



^Y 

Figure 1: Global finite element shape function iVa built on a mesh of triangles. 

Figure 2: Global finite element shape function Na built on a mesh of quadrilaterals. 



Figure 3: Bi-linear shape function associated with a node at (0,0). 

Figure 4:   Higher order hierarchical shape function built from the product of the 
bilinear shape function shown in Fig. 3 and the monomial x2. 



Figure 5:   Higher order hierarchical shape function built from the product of the 
bilinear shape function shown in Fig. 3 and the monomial y2. 

Figure 6: Overlapping patchs corresponding to clouds uja and ujß. Polynomials of 
differing degree pa and pp can be associated with nodes at xQ and Xß so as to produce 
non-uniform /ip-cloud/finite element approximations. 



0 Linear 

(•)       Linear + Quadratic 

Linear + Quadratic + Cubic 

Figure 7: Cloud-based hierarchic fields in two dimensional space. 

0 Linear 

{)       Quadratic 

Quadratic + Cubic 

Figure 8: Conventional hierarchic fields in two dimensional space. 



On the contrary, the new cloud-based hierarchic forms give the terms of 
quadratic and higher order expansion in terms of Cartesian coordinates through- 
out and will always retain the accuracy corresponding to the spectral order. Indeed 
some saving in degrees of freedom necessary for a given accuracy is available. 

(b) The new hierarchic form concentrates all the unknown degrees of freedom 
at corner nodes of the elements (cf. Fig. 7). This ensures a more compact band 
structure than that arising from the conventional hierarchic form. 

(c) Remarkably, the structure of this approximation allows the use of different 
values of the spectral order p on each cloud. Thus, other that basic connectivity of the 
low-order FEM mesh, none of the complications of high-order constraint conditions 
used in hp- finite element methods are necessary. Non-uniform h and p approximation 
can be easily accommodated over the mesh, as suggested in Fig. 6. 

(d) Further, the elimination of corner degrees of freedom follows precisely the 
same pattern as that used for the underlying linear element repeating the same elim- 
ination steps in the equation solver. This means that vectorization/parallelization of 
the algorithms is relatively easy. What is more, if adaptive steps are used in the re- 
finement, insertion of higher order terms at any node does not alter the computational 
sequence and can be simply accomplished. 

(e) The new process presents no difficulties on the boundaries if Dirichlet 
(prescribed displacement) boundaries occur and no higher order terms are introduced 
in boundary nodes than a simple specification of corner displacement suffices. 

With higher order terms on boundary nodes and with locally curved bound- 
aries, additional constraints may be required (exactly as in standard hierarchic ele- 
ments). 

For Neumann (prescribed traction) boundaries, no such difficulties arise pro- 
viding the integration is carried out on the exact curves. 

1.1    Construction of Linearly Independent Basis Functions 

The cloud-based hp finite element basis functions are defined above as 

4>ai •= NaLi 

where Na is a finite element shape function and L, is a polynomial of degree p. Since 
the shape functions form a PU 

£ <frai = £ NaLi = Li^2NQ = Li (1) 
a a a 

Therefore, the polynomials Li can be recovered through linear combinations of the 
cloud basis functions 4>ai. The finite element shape functions have the property that 



exist aXQ, aya, €fi, a = 1,... , n such that 

YlaxaNa = X 

a 

Y,ayQNa = y 
a 

Now if we take L; = x or Lt- = y we have from (1) that 

£ Nax = x       J2N°y = y 
a a 

Therefore the set {Na, NQx}l=l is not linearly independent. This can be avoided 
by a careful choice of the functions L, used to build the cloud basis functions. For 
example, the elements from the space span{NQ} must not be used to build the cloud 
basis functions. 

2    Numerical Experiments 

2.1     Illustration of the Basic Ideas 

As a first numerical experiment, we consider the solution of the following boundary- 
value problem 

Find u such that 

(2) 

(3) 

where x + iy = z G C and Re denotes the real part of. The value of u is fixed at 
(1,1) in order to make the solution unique. 

Figure 9 depicts the solution u. The initial finite element discretization is 
represented in Fig. 10. It is composed of only two quadrilateral bi-linear finite 
elements. The corresponding finite element solution obtained with this discretization 
is depicted in Fig. 11 which has an error in the energy norm of 

l|U:^P"E = 79-06% 
\\
U

\\E 

Quadratic shape functions like those depicted in Figs. 4 and 5 are then added 
to node 0, as shown in Fig. 12. The corresponding finite element solution is shown 
in Fig. 13. 

-Au = 0 m Ü-- = (-1 ,l)x (- -1, 1) 
du 
dn 

= 
d 

dn 
Re(z 2) on du 



Figure 9: Solution of problem (2), (3). 

I 
p 

>=7 

Figure 10: Initial finite element mesh composed of two bi-linear elements. 



Figure 11: Finite element solution obtained using the discretization of Fig. 10. 
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Figure 12: Cloud-finite element discretization with one quadratic node. 
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Figure 13: Finite element solution obtained using the discretization of Fig. 12. 

Figure 14 shows the finite element discretization in which nodes 0,1,3 and 4 
have quadratic approximation associated with them, while nodes 2 and 5 have bi- 
linear approximations. The corresponding finite element solution is shown in Fig. 15. 
The discretization error associated with this discretization is 

uhy\\E _ \u 

Ml 
34.78% 

E 

Figure 16 shows the finite element solution obtained using quadratic shape 
function at all nodes of the discretization. As expected, the error for this discretization 
is of 

h-uhP\\E _,n,in-8> 

IMI* 
o(io-8) 

It is emphasized that the enrichment of the finite element spaces, as described 
above, is done on a nodal basis and the polynomial order associated with a node does 
not depend on the polynomial order associated with neighboring nodes. 

The insensibility of the cloud-based approximations to element distortion is 
next demonstrated. Figure 17 shows the finite element discretization used. All nodes 
have quadratic cloud-based approximations. Figure 18 shows the corresponding finite 
element solution. As before, we get 

II" ~ uhp\\E 

u 
= <9(1(T8) 

E 
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Figure 14: Cloud-finite element discretization with four quadratic nodes. 

Figure 15: Finite element solution obtained using the discretization of Fig. 14. 
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Figure 16:  Finite element solution obtained using quadratic shape functions at all 
nodes of the mesh. 

0 1 

Figure 17: Distorted mesh of quadratic cloud-finite elements. 
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Figure 18: Finite element solution obtained using the discretization of Fig. 17. 

2.2    hp adaptivity 

We shall now consider the problem of an L-shaped plane elastic body loaded by the 
tractions associated with the following stress field 

aIX{r,6)   =    ArA-1[(2-(5(A + l))cos(A-l)ö-(A-l)cos(A-3)ö] 

<Tyy(r,0)   =   ArA-1[(2 + g(A + l))cos(A-l)ö + (A-l)cos(A-3)ö]        (4) 

<Txy(r,9)   =   ArA-1[(A-l)sin(A-3)Ö + (5(A + l)sin(A-l)ö] 

where (r,0) is the polar coordinate system shown in Fig.   19, A = 0.544 483 737, 
<? = 0.543 075 579. 

The stress field (4) corresponds to the first term of the symmetric part of the 
expansion of the elasticity solution in the neighborhood of the corner A shown in Fig. 
19 [9]. 

Plane strain conditions, unity thickness and Poisson's ratio of 0.3 are assumed. 
The strain energy of the exact solution is given by [9] 

£{u) = 4.154 544 23- 
,2A 

E 

where E is the modulus of elasticity and a is the dimension shown in Fig.  19.  The 
values E = a — 1 are assumed in the calculations. 

14 
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Figure 19: L-shaped elastic body. 

Two sequences of discretizations, S\ and £2, are used to solve this problem. In 
the former, the uniform mesh shown in Fig. 20 is used and the polynomial order of 
the approximations ranges from 1 to 8. A strongly graded mesh, as shown in Fig. 21, 
and non-uniform p distributions are used in the second sequence of discretizations. 
Geometric factors q = 0.10 and q = 0.15 for the size of the elements are used (cf. Fig. 
21). Figures 22 and 23 show the p distribution used in the fourth step of this sequence. 
The polynomial order of the clouds decrease linearly towards the singularity while the 
size of the finite elements decrease geometrically. 

The relative error, measured in the energy norm, versus the number of degrees 
of freedom is shown in Fig. 24 for the sequences of discretizations «Si and <S2 (with 
q = 0.10 and q = 0.15). As expected, the uniform mesh gives an algebraic rate of 
convergence while the strongly graded meshes lead to an exponential rate of conver- 
gence. This kind of behavior is typical of hp- finite element methods. However, the 
construction of non-uniform h- and p- discretizations in a cloud based framework is 
considerably more straightforward than in conventional hp- finite element methods. 
For this problem, the strongly graded mesh with q = 0.10 gives slightly better results 
than the case q = 0.15 
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Figure 20: Uniform mesh and p distribution for the L-shaped body. 
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Figure 21: Geometric mesh for the L-shaped body. A geometric factor of q = 0.15 is 
adopted in the computations. 
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Figure 22:   Polynomial order associated with the clouds at the fourth step of the 
sequence of discretizations S2 ■ 

Figure 23: Zoom at clouds near the re-entrant corner of Fig. 22. 
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Figure 24: Convergence in the energy norm for uniform and non-uniform cloud-based 
hp- distributions. 
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3    Conclusions 

In this investigation, we have explored the use of lower-order finite element approx- 
imations to generate partitions of unity on which hierarchical hp- cloud approxima- 
tions can be constructed. The resulting methodology has a number of useful features. 
Among these are that non-uniform hp- meshing with variable and hierarchical order p 
over clouds can be easily generated. The spectral convergence of p- and hp- methods 
is retained and the method is very robust, the accuracy being quite insensitive to 
mesh distortion. Also, by building cloud approximations on finite element meshes, 
Dirichlet boundary conditions are easily handled. 

The hp- convergence properties seem to differ from traditional p- version ele- 
ments, but exponential convergence is attained. Applications to problems with singu- 
larities are easily handled using cloud schemes. In all, this hybrid finite-element/cloud 
methodology appears to have a number of useful and attractive features that could 
prove to be important in broad engineering applications. 
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